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Abstract 

 

The evaluation of the safety integrity level of a new or existing safety instrumented system 
(SIS) requires detailed calculations based on the failure rates of the device and the planned 
maintenance-testing cycle for the system.  The failure rates of the devices are taken from standard 
failure rate tabulations of equipment.  The maintenance and testing plans are developed based on 
plant experience. The quantitative evaluation determines the probability of failure on demand 
(PFD) for a demand mode SIS and yields the safety integrity level (SIL) of the SIS. All of the data 
used in the SIL calculations are uncertain.  This paper explores the impact of uncertainty on the 
PFDcalculation fora SIS.  The “70%” rule of thumb from IEC 61508 is compared to results 
obtained using probability theory such as variance contribution analysis (VCA).  A proposed 
methodology for handling the uncertainty in the PFD calculations is presented based on the 
application of the VCA method.  An example is worked to demonstrate the methodology. 
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1. Background 

The calculation of the probability of failure on demand (PFD) is a common engineering task 
when designing an interlock in compliance with IEC 61511 [1]. The calculation of the PFD is often 
done using approximate equations defined in the ISA TR84.00.02 technical report [2]. Reliability 
block diagrams are often used to determine the PFD of an interlock implemented as a SIS, where 
the PFD of the individual field sensors, logic solver and final control elements are considered 
independently of each other in the sense that the failure of one device is not conditional on the 
failure of another. The PFD is then calculated using the failure rates of the devices, planned test 
intervals, vendor supplied estimates on diagnostic coverage of the devices and an allowance for 
the potential for common cause failures.  The PFD corresponds to one of four safety integrity 
levels (SILs), where each level possesses a PFD that is one order of magnitude less than the next, 
for example, SIL-1 has a PFD < 0.1, while SIL-2 has a PFD < 0.01.  Almost all of these parameters 
are uncertain.  The failure rate data are often taken from generic data sources which show wide 
ranges in the observed values.   

Because of the uncertainty in the parameters, the design engineer makes allowances in the 
design by the use of safety factors or rules of thumb to improve the chances that the final interlock 
installation will work as intended.  Since each engineer has a different set of safety factors and 
rules of thumb, two designs may differ significantly in the way a hazard is controlled. 

A more formal method for handling the underlying uncertainty in the PFD calculation of an 
interlock is needed.  This article will demonstrate two approaches available for the uncertainty 
calculations: 

 Direct determination by use of the Monte Carlo Simulation Method 
 Use of the Variance Contribution Analysis approximation. 

 

The easiest way to demonstrate the applicability of the variance contribution analysis to 
interlock uncertainty is via a worked example.  The remainder of this article demonstrates these 
two uncertainty analysis methods using a typical PFD calculation. 

2. Example Interlock 

Consider the process system shown in Figure 1.  The process uses a compressor to increase 
the pressure of a process stream prior to additional processing.  The gas being compressed is toxic 
and flammable.  Of concern is a slug of liquid being sent to the compressor.  If a liquid slug is sent 
to the compressor, significant damage to the compressor is expected with probable seal damage 
and a subsequent release of flammable and toxic material into the work area.  A large fire and/or 
explosion could result if the release were to be ignited.  If the release is not ignited, the nearby 
workers could be exposed to the toxic gas resulting in death or injury.  A Layer of Protection 
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Analysis (LOPA) review of this system has been completed.  Among several recommendations, 
the LOPA team recommended the installation of a SIL-2 high level interlock in the compressor 
knockout drum to stop the compressor prior to liquids entering the system.  

Figure 1 shows a simplified diagram for the interlock.  Three level sensors are provided in the 
Compressor Knock Out Drum.  The SIS logic solver will use 2oo3 voting to detect high level in 
the compressor knockout drum.  The SIS logic solver will also monitor the difference in the level 
signal from each of the three level sensors and will activate an alarm if the deviation is excessive.  
Two independent methods of stopping the compressor are provided.  The SIS will directly signal 
the motor controller on the compressor to stop.  In addition, the SIS logic solver will also signal 
two additional relays to open the power supply to the compressor motor. 

 

Figure 1 P&ID Sketch for Example Interlock 
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These two output actions will both be activated in the event of high level in the compressor 
knockout drum.  Either one of the two output actions is capable of stopping the compressor by 
turning off the electric power supply to the motor. 

3. Models 

The first step in the calculation of the “goodness” of an interlock is to establish the model to 
be used in the calculations.  Figure 2 presents the Reliability Block Diagram for the example.  Note 
that the sensors are 2oo3 voting and the final control elements are each 1oo1.  Supporting 
Information Appendix A presents the equations for various models that can be used for describing 
this system. 

The overall probability of failure on demand (PFD) of the interlock is given as: 

PFD = PFDs + PFDsis + PFDfce (Eq 1) 

Where: 

PFD is the probability of failure on demand of the interlock as a whole 

PFDs is the probability of failure on demand of the sensors (voting as 2oo3) 

PFDsis is the probability of failure on demand of the SIS logic solver 

PFDfce is the probability of failure on demand of the final control elements.   

Since there are two final control elements arranged in series, the PFDfce is composed of the 
probabilities of failure of the control elements (Relay and MCC). As: 

PFDfce= PFDr + PFDmcc (Eq 2) 

Where: 

PFDr = Probability of failure on demand of the two relays voting as 1oo2 to shutdown gas 
compressor.  

PFDmcc = Probability of failure on demand of the MCC to shutdown the gas compressor 
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Figure 2 Reliability Block Diagram for Example Interlock 

 

For this example, the following selections are made to model the performance of the interlock. 

3.1 Model for Sensors (2oo3) 

There are three sensors that will be used in a 2oo3 voting system.  From Supporting 
Information Appendix A, using Equation A-7, the model for the sensors becomes: 
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 (Eq 3) 

Where: 

PFDsavg is the average probability of failure on demand of the sensors 

DCs is the diagnostic coverage for sensor failure  

DIs is the diagnostic interval for the sensors 

MTTRs is the mean time to restore the sensors to functionality given a sensor failure 



 

 

6 
 
 

TIs is the test interval for the sensors 

βs is the common cause failure parameter 

λDs is the failure rate to a dangerous condition for the sensors 

3.2 Model for SIS Logic Solver 

Use a fixed PFD as specified by the vendor.  Unless detailed design information is provided 
by the SIS logic solver vendor, this will be the normal default condition for most studies.  For this 
problem, a typical PFD of 1.30 x 10-4 was selected to represent the SIS Logic Solver. 

3.3 Model for Final Control Elements 

There are two separate paths to shutdown the gas compressor.  First is by the SIS logic solver 
commanding the MCC to shutdown power to the gas compressor motor.  The second is for the SIS 
logic solver to issue a shutdown command to two interposing relays (R1 and R2) which will cause 
the power to the gas compressor motor to stop.   

3.3.1 Model for Interposing Relays (1oo2) 

There will be two interposing relays (R1 and R2 in the interlock).  From Supporting 
Information Appendix A, use Equation A-3 for the interposing relays, the model becomes: 
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Where: 

PFDravg is the average probability of failure on demand of the relays voting 1oo2 to shutoff 
the gas compressor. 

TIr is the test interval for the relays 

βris the common cause failure parameter 

λDris the failure rate to a dangerous condition for the relays 

3.3.2 Model for MCC (1oo1) 

From Supporting Information Appendix A and using equation A-1 for the MCC, the model 
becomes: 
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PFDmccavg = ࢉࢉ࢓ࡰࣅ ∗ ૛܋܋ܕ۷܂  

 (Eq 5) 

Where: 

PFDmccavg is the average probability of failure on demand of the MCC to shutoff the gas 
compressor. 

TImcc is the test interval for the MCC 

λDmcc is the failure rate to a dangerous condition for the MCC 

4. Data 

The calculation of the PFD of the interlock requires a set of data to be used to represent the 
system.  Tables 1 - 3 presents the data used to represent the interlock system.  Note that these data 
are taken from generic data sources and do not represent any particular device or system. 

Table 1. Sensor Failure Rate Data for Example Interlock 

Variable Units Value Notes 

λDs- Fail Dangerous Rate 1/Yr 5.0x10-3  

DCs – Diagnostic Coverage Unit Less 0.9  

DIs – Diagnostic Interval Yr 5.71x10-5 0.5 hours 

TIs – Test Interval Yr 5  

βs- Common Cause Failure Fraction Unit Less 0.02  

MTTRs - Mean Time to Restore Yr 8.22x10-3 72 hours 
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Table 2.  Relay Failure Rate Data for Example Interlock 

Variable Units Value 

λDr- Fail Dangerous Rate 1/Yr 2x10-3 

DCr – Diagnostic Coverage Unit Less 0 

DIr – Diagnostic Interval Yr 0 

TIr – Test Interval Yr 1 

   

βr- Common Cause Failure Fraction Unit Less 0.02 

MTTRr- Mean Time to Restore Yr 0 

 

Table 3.  MCC Failure Rate Data for Example Interlock 

Variable Units Value 

λDmcc- Fail Dangerous Rate 1/Yr 1.31E-03 

DCmcc – Diagnostic Coverage Unit Less N/A 

DImcc – Diagnostic Interval Yr N/A 

TImcc – Test Interval Yr 1 

βmcc- Common Cause Failure Fraction Unit Less N/A 

MTTRmcc - Mean Time to Restore Yr N/A 

 

Given the data in Tables (1–3) with the Equations (1–5), the PFD of the system may be 
calculated. 

PFD = PFDs + PFDsis+  PFDr+ PFDmcc (Eq 6) 

PFDs = 3.06x10-5 (Eq 7) 
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PFDsis = 1.34x10-4 (Eq 8) 

PFDr = 2.1x10-5 (Eq 9) 

PFDmcc = 6.75x10-4 (Eq 10) 

PFD = PFDs + PFDsis+  PFDr + PFDmcc= 8.39x10-4 (Eq 11) 

The Risk Reduction Factor (RRF) is 1/PFD or 1/8.39x10-4 = 1,192.  This calculation indicates 
that the interlock can perform as a SIL-3 capable system.  The original goal was a SIL-2 system.  
Therefore, the proposed design and test frequencies appear to be adequate to provide at least a 
SIL-2 protection of the gas compressor.  The direct calculation of the interlock PFD ignores all of 
the uncertainty in the data used to complete the calculations.  What is the impact on the results if 
uncertainty is included in the calculations?  What are the chances that the system will perform at 
least as a SIL-2 capable system with an RRF of 100?  These questions are addressed in the 
following uncertainty analysis. 

5. PFD Uncertainty Analysis 

Almost every variable in Equations (1-5) are uncertain.  Typical values are tabulated in 
generic sources such as IEEE 500 [3] , OREDA [4] , Smith [5] and others.  All of these generic 
data sources present a range from low to high with some recommended value for the parameter 
falling somewhere in the range.  Tables (4-6) present the ranges for each of the uncertain variables 
considered in this analysis.  The data in Tables (4-6) are representative of those to be found in the 
generic data sources.  Note that the numbers in tables used in this example are expressed using 
enough significant figures that will allow the reader to reproduce the calculations.  In a real 
problem, the number of significant figures reported should be consistent with the data used in the 
calculations. 
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Table 4. Uncertainty Data for Level Sensors Used in Example Interlock 

(All variable probability distributions assumed to be triangularly distributed) 

Variable Min Mode Max Mean Variance 

λDs- Fail Dangerous Rate 2.84x10-3Yr-1 5x10-3Yr-1 8.5x10-3Yr-1 5.45x10-3 Yr-1 1.36x10-6 Yr-1 

DCs – Diagnostic 
Coverage * 

0.8 0.9 0.99 0.897 1.51x10-3 

DIs – Diagnostic Interval 
** 

5.71x10-5 5.71x10-5 5.71x10-5 5.71x10-5 0 

TIs – Test Interval 4 Yr 5 Yr 6 Yr 5 Yr 5.56x10-2Yr2 

βs- Common Cause 
Failure Fraction * 

0 0.02 0.1 0.04 4.67x10-4 

MTTRs - Mean Time to 
Restore *** 

1.37x10-3Yr 8.22x10-3Yr 1.92x10-2Yr 9.59x10-3Yr 1.34x10-5Yr2 

* Unit less  ** 0.5 hours, assumed to be deterministic  ***Min of 12 hr, Mode of 72 hours, Max of 168 hrs 

 
Table 5. Uncertainty Data for Relays Used in Example Interlock 

(All variable probability distributions assumed to be triangularly distributed) 

Variable Min Mode Max Mean Variance 

λDr- Fail Dangerous Rate 8.76x10-9 Yr-1 2.00x10-3 Yr-1 4.73x10-2 Yr-1 1.64x10-2 Yr-1 1.19x10-4 Yr-2 

DCr – Diagnostic 
Coverage * 

NA NA NA NA NA 

DIr – Diagnostic 
Interval* 

NA NA NA NA NA 

TIr – Test Interval 1 Yr 1 Yr 2 Yr 1.33 Yr 0.056Yr2 

βr- Common Cause 
Failure Fraction 

0 0.02 0.1 0.04 4.67x10-4 

MTTRr - Mean Time to 
Restore* 

NA NA NA NA NA 

* Not used in relay model 
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Table 6. Uncertainty Data for MCC Used in Example Interlock 

(All variable probability distributions assumed to be triangularly distributed) 

Variable Min Mode Max Mean Variance 

λDr- Fail Dangerous Rate 1.74x10-4Yr-1 1.31x10-3Yr-1 3.00x10-2 Yr-1 1.05x10-2Yr-1 4.76x10-5Yr-2 

DCr– Diagnostic 
Coverage* 

NA NA NA NA NA 

DIr – Diagnostic 
Interval* 

NA NA NA NA NA 

TIr – Test Interval 1 Yr 1 Yr 2 Yr 1.33 Yr 5.6x10-2Yr2 

βr- Common Cause 
Failure Fraction* 

NA NA NA NA NA 

MTTRr - Mean Time to 
Restore* 

NA NA NA NA NA 

* Not used in MCC model 

The information contained in the ranges on the variables in Tables (4-6) contain the 
information needed to evaluate the uncertainty in the PDF of the interlock.  All of the uncertain 
variables are considered to be distributed per the triangular probability distribution.  Properties of 
the triangular probability distribution are presented in Supporting Information Appendix B of this 
paper. 

5.1 Method 1 - Monte Carlo Analysis of PFD 

The RiskAMP Monte Carlo software package [6] was used to simulate the PFD of the 
example interlock.  The models presented above for the sensor and final control elements along 
with the probability distribution data of Tables (4-6) were used to complete the Monte Carlo 
simulation.  The Monte Carlo simulation used the same probability distribution (triangular) to 
represent the uncertain parameters.  A total of 100,000 random trials were completed using the 
Latin Hypercube sampling method to speed the convergence of the simulation.   

Figure 3 presents the resulting frequency count histogram of frequency of example interlock 
PFD.  The histogram plot represents a count of the number occurrences of the PFD as a result of 
the 100,000 Monte Carlo trials. Also shown in Figure 3 is the SIL-2 criterion of a PFD of  
1 x 10-2.  Those outcomes to the right of the SIL-2 criterion represent designs that would not 
achieve needed SIL-2 performance for risk reduction.  Those outcomes to the left of the SIL-2 
criterion represent successful designs. The resulting mean, standard deviation and 95% upper limit 
of the example interlock PFD determined from the simulation are as follows: 
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Mean PFD = 7.8 x 10-3 or an RRF of 128 

Standard Deviation of PFD = 4.8 x 10-3 

95% upper limit on PFD = 1.70 x 10-2 or an RRF of 59 

70% upper limit on PFD = 10 x 10-3 or an RRF 100 

These interlock performance indicators will be used as the basis for judging other methods of 
analysis.  These performance indicators are the best estimates of how the final system will actually 
perform given the input data used in the interlock design. 

 

Figure 3. Monte Carlo Simulation Frequency Count for Example Interlock Probability 
of Failure on Demand (PFD) 

 

5.2 Method 2 - Variance Contribution Analysis (VCA) of PFD  

5.2.1 Review of VCA Methodology  

Each of the variables used to compute the PFD is uncertain.  Therefore, the PFD is a 
mathematical function of a number of random variables.  The mean and variance of the PFD is 
required to understand the uncertainty in the PFD estimate.  The mean and variance of a function 
of random variables can be approximated using the method described by Haugen [7] and applied 



 

 

13 
 
 

by Freeman [8, 9].  An arbitrary function, F(xi), of a set of independent random variables, xi, is 
defined as: 

Let Y = F(xi)  (Eq 12) 

The mean of Y can be estimated using the following approximation:  E(Y) = F[E(xi)] (Eq 13) 

Where:  

E(Y) = expected value of random variable Y = mean of Y 

E(xi) = expected value of random variable xi = mean of xi 

The variance of Y can likewise be estimated as: ܸ(ܻ) = ∑௜ୀଵ௡ ቂ డ௬డ௫೔ቃଶ  (Eq 14) (௜ݔ)ܸ

Where: 

V(Y) = variance of random variable Y as defined above in Equation 14 

V(xi) = variance of random variable xi  as defined above in Equation 14 

Note that the variance is simply the square of the standard deviation.  Using the variance will 
simplify the mathematics that is described below.  The contribution of each independent random 
variable to the overall variance in the function is: ܸ(ܻ ݂݉݋ݎ ௜ܺ) =  ቂ డ௬డ௫೔ቃଶ  (Eq 15)     (௜ݔ)ܸ

The relative contribution of each term to the overall variance V(Y) is a measure of its 
importance with regard to the uncertainty in the particular random variable, xi.  In effect, this is a 
sensitivity analysis combined with an uncertainty evaluation.  The variance contribution combines 
the sensitivity of the answer to changes in the uncertain random variable xi, with a measure of the 
uncertainty in the random variable, V(xi).  

5.2.2 VCA of Example Interlock 

The best estimate of the example interlock PFD is determined by using the mean value of the 
uncertain parameters rather than the mode (most likely).  Only when the probability distribution is 
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symmetric about the mean (such as the uniform or normal distributions) will the mean and mode 
correspond to the same value.  Substituting the mean values (given in Tables 4, 5, and 6) for the 
uncertain parameters into the equations for that describe the example interlock, mean interlock 
PFD is found as: 

PFD = 7.72 x 10-3 

RRF = 1/PFD = 130 

The error in the relative mean RRF is found as: 

Relative error = (VCA estimate – Monte Carlo estimate)/Monte Carlo estimate 

Relative error = (130 – 128)/128 = 2/128 => 1.6% 

The variance of the PFD can be found by use of the parameter sensitivity weighted 
contribution of the various uncertain parameters.  Previously, Freeman [Ref 9] found that a 
perturbation of 10 percent about the mean to determine the sensitivity resulted in an error of no 
more than 16% in the resulting uncertainty calculations.  Thus, for this example interlock, the 
sensitivity of each uncertain variable was determined by a numerical perturbation of 10 percent 
about the mean of the uncertain variable.  Table 7 presents the results of the calculations. In 
addition, the sensitivity weighted contribution of each of the random variables is also presented in 
Table 7.  See Appendix B of the on-line supplementary information for variance and sensitivity 
calculation details. 

Using the VCA method for estimation of the variance: 

Variance of PFD = 3.18 x 10-5  

Standard Deviation of PFD = 5.64 x 10-3 

For comparison, the Monte Carlo method found the standard deviation to be: 

Standard Deviation of PFD from Monte Carlo = 4.8 x 10-3 

Once again, the relative error is: 

Relative error = (VCA estimate – Monte Carlo estimate)/Monte Carlo estimate 

Relative error = (5.64 x 10-3- 4.8 x 10-3 )/ 4.8 x 10-3 

Relative error => 17.5 % 
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Haugen [7] found that the normal probability distribution may often be used to compute the 
confidence limits on the random variable found as a function of other random variables.  The 
standard normal distribution has a mean of zero and a standard deviation of one.  Tabulations of 
the cumulative standard normal distribution are presented in every statistics text (for example, 
Meyer, [10]) using a normalization function to convert the actual distribution to the standard 
normal distribution. 

Table 7.  Sensitivity, Variance and Variance Contribution to Example Interlock 
Uncertainty 

Random 
Variable 

Mean 
Mean 
Units 

Variance 
Variance 

Units 
Sensitivity 

Variance 
Contribution 

Variance 
Contribution 

% 

LT Sensor Failure 
Rate 5.45x10-3 Event/yr 1.36x10-6 (Event/yr)2 1.30x10-2 2.30x10-10 0.00% 

MCC  Failure Rate 1.05x10-2 Event/yr 4.76x10-5 (Event/yr)2 6.65x10-1 2.11x10-5 66.11% 

Relay  Failure Rate 1.64x10-2 Event/yr 5.58x10-3 (Event/yr)2 4.07x10-2 9.23x10-6 28.98% 

Beta1 - LT 0.04 Unit less 4.67x10-5 Unit less 1.45x10-3 9.77x10-11 0.00% 

Beta2 - Relays 0.04 Unit less 4.67x10-5 Unit less -1.07x10-2 5.35x10-9 0.02% 

Diagnostic 
Coverage (DC) 0.897 Unit less 1.5x10-3 Unit less -6.08x10-4 5.57x10-10 0.00% 

LT  MTTR 9.59x10-3 Years 1.34x10-5 Years2 2.62x10-4 9.18x10-13 0.00% 

MCC Test Interval 1.33 Years 0.056 Years2 5.25x10-3 1.54x10-6 4.84% 

Relay - Test 
Interval 1.33 Years 0.056 Years2 5.03x10-4 1.41x10-8 0.04% 

LT Sensor Test 
Interval 5 Years 0.1667 Years2 1.36x10-5 3.10x10-11 0.00% 

Total Variance      3.18x10-5  

Std Dev      5.64x10-3  

 

By convention this normalization function is referred to as Z and is given by: 
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Z =  ൤ݔ௜ − ߪ(ݔ)ܧ ൨ 

 (Eq 16) 

Where: 

xi is a particular value of the random variable x 

E(x) is the expected value of the random variable x 

is the standard deviation of the normal distribution for the random variable x 

For example, with Z equal to 1.64, the cumulative normal distribution is 0.95 [Ref. 10].  Stated 
differently, 95% of the values of the random variable will be below that found when Z is 1.64.  
The value of Z equal to 0.52 corresponds to the cumulative normal distribution value of 0.70. 

With the mean and variance of the PFD of the example interlock estimated above, it is possible 
to estimate the confidence limits.  At the 95% limit, the value for Z is 1.64 [Ref. 10]. The value 
for the interlock PFD mean and standard deviation are: 

Mean of example interlock PFD = E(x) =7.80 x 10-3 

Variance of example interlock PFD = 3.18 x 10-5 

The standard deviation of the example interlock PFD is the square root of the example 
interlock variance or: 

Std Dev = [3.18 x 10-5]1/2   = SQRT[3.18 x 10-5 ] =  = 5.64 x 10-3 

The 95 percent upper limit on the example interlock PFD is found by solving Equation 16 for 
X95% as: 

X95% = 1.64 σ + E(x)  (Eq 17) 

Where: 

X95% is the upper 95% limit on the computed PFD of the interlock of interest . 

σ is the Standard Deviation of the interlock PFD based on uncertainty in the data 

E(x) is the Mean frequency of the interlock PFD 
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Substituting the values for E(x) and σ determined above, the corresponding 95% upper limit 
on the frequency of the example interlock PFD is 1.70 x 10-2 or an RRF of 59.  Likewise, the 70% 
upper limit is calculated with Z set at 0.52 as 1.07 x 10-2 or an RRF of 93. 

6. Discussion 

Two different methods (Monte Carlo Simulation and Variance Contribution Analysis) have 
been used above to calculate the performance of the example interlock.  The results of the above 
calculations are summarized in Table 8. 

Table 8. Summary of Example Interlock Results by Method of Calculations 

Calculation Basis Description 

By Monte Carlo 
Simulation 

By Variance Contribution 
Analysis (VCA) 

PFD RRF PFD RRF 

Based on generic data 
recommended values 

8.39x10-4 1192 8.39x10-4 1192 

Based on mean values of uncertain 
parameters 

7.80x10-3 128 7.72x10-3 130 

Based on 70% chance interlock 
will work 

1.07x10-2 93 1.07x10-2 93 

Based on 95% chance interlock 
will work 

1.70x10-2 59 1.70x10-2 59 

 

For this example interlock, the use of the generic database recommended values will yield a 
PFD value that is significantly less conservative than those that consider uncertainty. Using the 
recommended data, the design calculates out to be in the low range SIL-3 performance.  Using the 
parameter means instead of the recommended value, results in the interlock performance dropping 
to low range SIL-2.  When we look at the chances that the example interlock will achieve at least 
a specified level of confidence of working, we find that the interlock is midrange SIL-1 for a 95% 
chance of working.  If only a 70% chance of working is established by the designer, the calculated 
example interlock performance is near the division line between SIL-1 and SIL-2 (RRF=100). 

From Table 7, it can be seen that only three of the uncertain variables contribute to the 
uncertainty in the variance of interlock PFD.  These are: 
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MCC Failure Rate (66% of variance contribution) 

Relay Failure Rate (29% of variance contribution) 

MCC Test Interval (5% of variance contribution) 

 

All of the other variables contribute a negligible amount to the uncertainty in the interlock 
performance.  By reducing the uncertainty in these variables by data collection, talks with 
equipment suppliers or firmly fixing test intervals on equipment, the uncertainty in the PFD can 
be reduced.  The resulting interlock performance confidence limits will be closer to the mean RRF 
of 130.  However, the confidence limits will always be BELOW or worse than the performance 
based on calculations using the mean value of the parameters.  This fact requires that the interlock 
designer understand that there is a difference between the desired RRF as determined by a LOPA 
team and the design target RRF that the designer must achieve.  The desired RRF is used to define 
the design target RRF.  The design target RRF will ALWAYS be higher than the desired RRF.  
That the design and target RRF are different is best illustrated by giving their definitions. 

 Desired RRF – Risk reduction factor needed to manage the calculated risk from a process 
scenario to an acceptable level within a company’s risk management program.  Alternately, 
the desired risk reduction could be expressed as the desired PDF for the interlock. 

 Design Target RRF – Risk reduction factor used by control and design engineers to select 
the equipment and logic for an interlock that will achieve the Desired RRF.  Alternately, 
the design target could be expressed as the design target PDF. 

For good design, there should be a high probability of success of the final interlock design.  
The probability of success needs to be specified by the owner/operator of the final system.  In the 
above interlock example two probabilities of success (70% and 95%) were used to illustrate the 
calculation methods. 

7. Recommended Interlock PFD Uncertainty Analysis Method 

Based on the above example interlock, the following general method may be used in the 
evaluation of the uncertainty in the performance of a new interlock system.  

1. Complete the interlock design using the methods outlined in  
IEC 61511 [1].  

2. Create interlock performance equation as the mathematical model for the combination of 
sensor, logic solver and final control elements using the methods outlined in ISA Technical 
Reports ([2], TR84.00.02).  An example of this step is given in Equations (1-5) for the 
example interlock. 
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3. Define the uncertainty in the parameters and variables of the interlock model specified in 
step 2.  The uncertainty can be given as the upper and lower range of the possible values 
(uniform probability distribution), as the upper, lower and recommended values (triangular 
distribution), or as a mean and standard deviation (normal distribution).  See the example 
above for guidance in the evaluation of SIS interlocks. 

4. Compute the expected value of each variable in the interlock performance equation.  The 
equations for the mean and variance for the uniform, triangular and normal probability 
distributions are presented for various probability distributions in Vose [11].  The example 
interlock calculations used a triangular distribution to represent the uncertainty in the 
parameters. 

5. Compute the expected value or mean of the interlock PFD using the mean value of each of 
the variables in Step 4.   

6. Compute the sensitivity of the result from the interlock performance equation by estimating 
the partial derivative of the basic interlock performance equation with respect to each of 
the variables using a 10% perturbation about the mean or expected value of each random 
variable.  See the interlock example problem worked above as an example of this step. 

7. Compute the variance of the interlock performance equation PFD by use of the variance 
contribution using Equations 14 and 15.  This entails multiplying the variance of each of 
the uncertain variables in the basic interlock performance equation by the square of its 
sensitivity (obtained in step 6), as evaluated at the variable mean.  Sum the resulting terms 
to obtain the overall variance of the PFD in the interlock performance equation. 

8. Determine the level of risk that the owner/operator wishes to take that the final interlock 
will not work.  In this paper, two levels of risk have been used: 
 5% chance of failure or 95% chance of success 
 30% chance of failure or 70% chance of success 

9. Assuming that the interlock owner operator wishes to take a low risk (5%) of the interlock 
failing to achieve its design target PFD, compute the 95% upper confidence limit on the 
computed PFD by use of the standard normal factor, Z, [10] as: 

 

Z =  ൤ݔ௜ − ߪ(ݔ)ܧ ൨ 

 (Eq 18) 

Where: 

σ     =  standard deviation of the PFD of the interlock of interest from the interlock 
performance equation obtained from step 7.  Note that the variance of a random 
variable is the square of the standard deviation of the random variable. 

E(x) = the expected value of the PFD of the interlock of interest from the interlock 
performance equation obtained from step 5 
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 For the 95% upper limit, Z = 1.64.  Rearranging Eq. 10 allows for the direct 
calculation of the corresponding value of the 95% upper confidence limit on the 
PFD as: 

X95% = 1.64 σ + E(x)  (Eq 19) 

 Where: 

 X95% = the upper 95% limit on the computed PFD of the interlock of interest from 
the interlock performance equation. 

10. Compare the 95% upper confidence limit on the PFD of the interlock of concern with that 
established as the desired PFD for risk reduction.  If the 95% confidence of the RRF is 
greater than the desired RRF, the design is complete.  If not, revise the design or change 
inspection test intervals to achieve the desired RRF.  If it is not possible to achieve the 
desired target RRF economically, revisit the LOPA study accordingly to incorporate better 
information obtained in the uncertainty analysis.  Improve the integrity of the LOPA IPLs 
or identify additional IPLs to drive the risk to a tolerable level.  Continue this process until 
the computed RRFs are greater than the desired RRFs for risk reduction and risk 
management. 

 

8. Supplementary Material Available On-Line 

In the on-line version of this paper the reader will find a supplementary file that contains 
Appendices A and B to this paper.  Appendix A includes the general equations used in interlock 
validation.  Appendix B includes details on the calculation of the means and variances used in the 
body of this paper.  The on-line version of Process Safety Progress materials may be found at: 

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1547-5913 
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