Instrument Mechanical Integrity and Reliability

Setting the foundation for long term **sustainability**, **s**afety and competitive advantage

www.SIS-TECH.com

Objectives

- Establish purpose of instrument reliability program
- Identify the key program elements
- Understand the barriers to the program
- Identify target metrics
- Show preliminary benchmarking results
- Identify causes of gaps
- Build support through understanding
- Learn techniques to drive reliability improvement
- Communicate plans for path forward
 www.SIS-TECH.com

Two Components

- Mechanical Integrity (The Foundation)
 - Equipment is properly designed, installed, commissioned, documented and maintained across the life cycle to enable a specified performance
- Reliability
 - (With sound MI) equipment performs its required function under the specified conditions for a specified time (mission time)
 - If equipment does not meet this mission time we need good data to determine why

MI Lifecycle

Why Instrument Reliability?

- Instrumentation is the process central nervous system
 - Ensures Safe and Reliable Operations
 - Ensures Product Quality and Customer Satisfaction
 - Optimizes Production Capability
 - Process Uptime/Availability
 - Product Waste
 - Energy Efficiency
 - Maintenance Effectiveness
- Healthcare for Instruments

Who Cares? OSHA

- 1910.119 (j)(6) Quality assurance.
 - In the construction of new plants and equipment, the employer shall assure that equipment as it is fabricated is suitable for the process application for which they will be used.
 - Appropriate checks and inspections shall be performed to assure that equipment is installed properly and consistent with design specifications and the manufacturer's instructions.

<u>Who Cares?</u> IEC 61511/ISA 84.00.01

– Clause 5.2.5.3

- Procedures shall be implemented to **evaluate the performance** of the safety instrumented system against its safety requirements
- Clause 11.5.3.1
 - Appropriate evidence shall be available that the components and subsystems are suitable for use in the safety instrumented system.
- Clause 16.3.1.5
 - At some periodic interval (determined by the user), the frequency of testing shall be re-evaluated based on various factors including historical test data, plant experience, hardware degradation, and software reliability.

The Evolution of Instrument Reliability

- The Early Days

 Fix It When It Breaks
- Present Day
 - Scheduled PPM with (?) value
- What we Want
 - Condition based maintenance
- But how do we know??
 - Are you doing too much or not enough?
 - Is it done at the right time?
 - Where's the "herd"? (Ken Bond-Shell)

Where Should We Begin?

• Survey Says: Some results from November Survey....

• But First.....

.....Do we have anything against which we can "gauge" our current performance??

Materials Technology Institute (MTI)

- World Class Performance from MTI 2003-2004
 - Maintenance \$ spent vs. Replacement Asset Base
 - Target: <3% overall equipment
 - Instrument Work Orders closed as "no problem found"
 - Target: <5%
 - Percent of Instrument Overdue Work Orders
 - Target: 0%
 - Percent overtime spent by Instrument Mechanic
 - Target: 5-10%
 - Percent time spent by Instrument Mechanic in training
 - Target: 7-10%

Survey Responses - Distribution

Survey Responses - Disciplines

Process Control Engineer

- Instrument Reliability Engineer
- Maintenance Supervisor

Other

Maintenance \$ Spent vs RAB

 Indicates maintenance cost is high relative to asset value

Percentage Overdue Work Orders

Indicates scheduling deficiencies are widespread

Percentage Emergency Work Orders

• Indicates maintenance deficiencies are widespread

Instrument Work Orders closed as "no problem found"

Indicates problems with diagnostics, training, work processes and documentation

www.SIS-TECH.com

Instrument Technician Work Load Indicates high work load expectation 62.5% of technicians ■ <200 responsible for more than 700 loops 200-700 700-1200 1200-2000 ■>2000

<10% overtime: 44% >10% overtime: 56%

Small amount of overtime is generally expected and accepted, while high amounts have a negative effect

% Time Spent in Training

Indicates inadequate training time

Impact of Repeat Offenders

Total IEA

Equipment

63.4%

1.3% Repeat Offenders Account for 63.4% of all IEA Repair Cost!

*From paper presented at the 2011 Texas A&M Instrument Symposium: How to Create an Instrument Reliability Program by John Thibodeaux and Marcus Rideaux of The Dow Chemical Company

www.SIS-TECH.com

What Keeps Us From Knowing

- Poor data integrity and quality
- Poor information availability and consistency
- Lack of broad understanding and consistency
- Poor or missing internal practices and procedures
- Poorly understood compliance expectations
- Inadequate revision control or notification of changes
- Lack of comprehensive training on data, information, procedures & documentation practices, and ownership

*CCPS IPS Book 2007

Key Elements of Instrument Reliability Program

- People Accountabilities
 - Engineering
 - Maintenance
 - Operations
- Equipment Tools
 - Engineering/Design Databases
 - Computerized Maintenance Management Systems
 - I/A Smart Asset Management
 - Approved equipment list
- Work Processes Procedures
 - Engineering
 - Maintenance
 - Operations

- Develop Strategy and Plans
 - To Improve multi-discipline work process interaction and accountability
 - Enforce Life Cycle
 Documentation Integrity
 - To capture, categorize and analyze data

- Improve Equipment
 - 63% did not track infant mortality after installation
 - 50% did not track Mean Time
 Between Work Orders or Mean
 Time Between Failure
 - 27% did not have a process for tracking bad actors
 - 42% did not track production impact due to instrument failures

You cannot improve what you don't monitor!

- Improve work practices
 - 53% had no defined process for People transferring data from design to maintenance database
 - Who's the master? Do you know?
 - 42% design database
 - 58% maintenance database
 - 21% used the same MI process for all equipment regardless of criticality

Work Practices

Equipment

- Improve People Management
 - Training
 - 75% invested less than 5% in training yet expect to get the right information from people in the trenches (targeted/customized)
 - Failure Documentation
 - 48% do not use standard failure codes

Quality Assurance begins and ends with people!

This Is A Journey: Begin with fixing the obvious

- Capital Projects and Plant Improvements
 - Process parameters and ambient conditions
 - Incorporate maintenance strategy in design (IPA VIP?)
 - Who is watching your packaged equipment design and fabrication?
 - Storage prior to installation
 - Detailed commissioning plan

This Is A Journey—Begin with fixing the obvious

- Maintenance and operations
 - Find available sources of information
 - Work/repair notifications
 - Maintenance Tech notes/interviews (notes in the file drawer)
 - Asset management system records
 - Process Historian/Alarm Log
 - Emergency and overdue work orders
 - Are you closing this loop?

This Is A Journey—Begin with fixing the obvious

- Maintenance and Operations
 - Largest Technology Family Grouping of Work Orders
 - Probably Valves and/or Analyzers
 - Usually Systematic in Failure
 - Sizing process parameter "inflation"
 - Bug screens
 - Solenoid valve exhaust orientation
 - Painters
 - Insulators
 - Sample systems
 - Operator and other's actions

This Is A Journey—Looking down the road

- n the same page comparing
- Getting everyone on the same page comparing "apples" to "apples"
 - Failure type
 - Failure mode
 - Failure cause
 - Failure mechanism
 - Retiring records (CMMS)
 - Establishing the master documentation repository
 - Data transfer from design engineering to CMMS
 - Trusted information you can count during RCI, Audits
 - Records management

This Is A Journey—Looking down the road

- Growing an industry instrument reliability network—manufacturers, service providers and end users
- Start with individual components build toward system improvement and reliability growth
- Sharing data within industry—are you with the herd?

Conclusion

- Questions
- Discussion
- What's Next