Dr. Angela Summers
President
SIS-TECH

- 2009 ISA Fellow
- 2005 ISA Albert F Sperry Award
- Technical writer, CCPS Guidelines for Safe and Reliable Instrumented Protective Systems
- 1 of 5 US Experts to the IEC 61508/IEC 61511 committee
- Working Group Chair, TR84.00.02 (SIL Verification) and TR84.00.04 (Guidance on ISA 84.00.01-2004)
- Member of more than 20 industrial committees and forums
- Ph.D., Centennial and Engineering Fellow, The University of Alabama
- Licensed Professional Engineer in the State of Texas

What’s up with SIS?

Angela E. Summers, PhD, PE
President
SIS-TECH Solutions, LP
Presentation Scope and Disclaimer

Scope
- ISA 91.01
- ISA TR84.00.??
 - .02 .03 .04
- IEC 61511 or ANSI/ISA 84.00.01

Disclaimer
- Represents my personal opinion
- May not represent the opinions of everyone on the committee

ISA 84 – instrumentation and control in process safety applications

- The ISA 84 and 91 committees merged in 2007
- ISA 91 - Criticality Ranking for Instrumentation
 - Identification of the instruments that are classified as emergency shutdown systems and safety critical controls
 - Establishes requirements for testing and documenting the test results of these systems
- ISA 84 - Electrical/Electronic/Programmable Electronic Systems (E/E/PES) for Use in Process Safety Applications
 - Develops standards and technical reports for use in applying Electrical/Electronic/Programmable Electronic Systems (E/E/PES) for use in process safety applications.
ISA 91.01

- New number: ISA 84.91.01 replaces ISA 91.01
- New title: Identification and Mechanical Integrity of Instrumented Safety Functions in the Process Industry
- Defines what must be covered by mechanical integrity
- Uses new term – Instrumented safety function
 - Process safety safeguard implemented with instrumentation and controls, used to achieve or maintain a safe state for a process, and required to provide risk reduction with respect to a specific hazardous event.

Relationship between ISF and SIF

- Safety instrumented functions (SIF) are one of many types of ISF used to maintain safe operation.

Draft ISA 84.91.01
ANSI/ISA 84.00.01-2004

Title: Functional Safety: Safety Instrumented Systems for the Process Industry Sector

- Next revision number: ANSI/ISA 61511

Plan to adopt revised IEC 61511 when available

Maintain “grandfather clause” for existing safety instrumented systems (SIS) - Part 1 Clause 1 y:

For existing SIS designed and constructed in accordance with codes, standards, or practices prior to the issuance of this standard (e.g. ANSI/ISA 84.01-1996), the owner/operator shall determine that the equipment is designed, maintained, inspected, tested, and operating in a safe manner.

Complimentary ISA Technical Reports

- Updating 3 technical reports as a complimentary series
 - TR84.00.02
 - TR84.00.03
 - TR84.00.04

- Provide informative guidance related to specific phases of the SIS lifecycle

- Practical examples of implementation on various topics and applications

- TR updates include topics to be addressed in IEC 61511 update
ISA TR84.00.02 - 2002

- **Safety Integrity Level (SIL) Verification of Safety Instrumented Functions** - Next revision late 2012
 - Reorganizing into 1 part with annexes
- **Overview – Quantitative Analysis**
 - assessing random and systematic failures, failure modes and failure rates
 - understanding the impact of diagnostics and mechanical integrity (MI) activities on the SIL and reliability
 - identifying sources of common cause, common mode and systematic failures
 - using quantitative methodologies to verify the SIL and spurious trip rate

ISA TR84.00.03 - 2002

- **New title - Mechanical Integrity of Safety Instrumented Systems (SIS)** - Next revision 2011
 - Reorganizing in 1 part with annexes
- **Overview – Testing and Maintenance**
 - identification of personnel roles and responsibilities when establishing an MI plan
 - important considerations in establishing an effective MI program
 - detailed examples to illustrate user work processes supporting various activities of the MI program
Guidelines for the Implementation of ANSI/ISA 84.00.01-2004 – Already balloted
- Same organization – 2 parts with multiple annexes

Overview – The lifecycle
- "grandfathering" existing SISs (Clause 3/Annex A)
- operator initiated functions (Annex B)
- separation of the BPCS and SIS (Annex F)
- field device and logic solver selection (Annex L)
- manual shutdown considerations (Annex P)
- design/installation considerations (Annex N)

The big changes:
- Annex C Management of Functional Safety
 • Including Clause 5 quality assurance requirements
- Annex L Device Selection
 • Enhancing user approval approach with example method
- Annex P Response to Detection of a Dangerous Fault
 • More considerations for fault detection strategy
- New Annex Q Setpoint Guidance
- New Annex R Key Performance Indicators
Three new efforts

- ISA TR84.00.04 – Revision 3
 - Updating safety alarm guidance (Annex B)
- ISA TR84 – Wireless WG8
 - Considerations for implementation of wireless of SIS applications
- ISA TR84 – Security WG9
 - Consideration for ensuring safety and security of SIS applications

Summary

- Practices are on a regular revision cycle
 - Most are on 5 year cycle, but often take longer
- During recent revision cycle, more focus on
 - Gathering prior use information
 - Understanding operating environment impact
 - Addressing common cause in hardware, software, and procedures
 - Estimating and accounting for systematic errors
IEC 61511 Revision

- 100s of comments submitted by national committees
 - Changes to standard are limited to these comments
- Many changes intended to improve clarity
- Adding guidance on many lifecycle activities
- Presentation is limited to top 5 user impacting subject areas

Top 5

- SIL 4
- Credit in the BPCS
- Hardware Fault Tolerance
- Prior Use
- Safety Manual
1. SIL 4 - Problem

- Typical industry practices considered insufficient to achieve a single function SIL 4
- Some applications require 4 orders of magnitude risk reduction from instrumented systems (includes BPCS, SIS, Fire and Gas, etc.)
 - Inherently safer design is often not an option
 - Difficult to implement multiple independent instrumented safety systems
 - Dependency is not adequately addressed through division into multiple functions

1. SIL 4 - Proposed Solution

- Supplemental analysis for single or multiple instrumented functions providing SIL 4 equivalent risk reduction:
 - Assess common cause between SIS and the cause of demand.
 - Assess common cause with other systems providing risk reduction
 - Assess any dependencies introduced by common proof test people, procedures and timing
 - Recommend quantitative method to estimate the hazardous event frequency

- Limit single function SIL 4 to non-PE logic solvers
2. Credit in the BPCS - Problem

- No clear definition on what using the BPCS as a layer means
 - Can include both normally operating as well as state control functions
- Guidance in Part 2 Clause 9.3
 - Illustrates 2 separate systems to achieve 2 credits – 1 initiating cause and 1 safety function
- CCPS LOPA book allowed 2 credits in the BPCS
 - When BPCS is not initiating cause (2 safety functions)
 - Independence in sensors, final elements, and I/O modules
 - Requires security and MOC
 - Demonstrated performance (prior use)

2. Credit in the BPCS - Proposed Solution

- Claim no more than 2 separate and independent instrumented functions (that are not designed per IEC 61511) for same event.
- Justify claimed risk reduction.
 - Design analysis and prior use
 - Fault detection and response
 - Mechanical integrity
 - Access and Management of Change (including manual/bypass controls)
- Aligns with ISA 84.91.01
3. Hardware Fault Tolerance - Problem

- Logic solver HFT based on SFF
 - SFF has fallen out of favor of most users
 - How does less reliable translate to safer product?
- Field device HFT uses complicated method
 - Use of Add 1 or Subtract 1 rules are not clear
 - Misapplied by many people – too much or too little
- New IEC 61508 method (Route 2H)
 - No consideration of SFF
 - Focuses on prior use

3. Hardware Fault Tolerance - Proposed Solution

- Remove current add/subtract HFT method
- Revise new IEC 61508 method (Route 2H) for user application
 - SIL 1 (0), SIL 2 (0), and SIL 3 (1) for demand mode
 - Minimum diagnostic coverage for PE devices (>60%)
 - Prior use history to ensure random and systematic issues are understood
 - For field devices and non-PE logic solvers only, allows lowering HFT if the:
 - risk assessment demonstrates that the overall risk is increased by adding complexity to achieve the minimum HFT
 AND
 - verification shows the SIS meets the SIL
4. Prior Use - Problem

- Use of IEC 61508 compliant field devices with no field experience is considered “unwise” by Users
 - Operating environment significantly impacts performance
 - User implementation may improve or degrade performance from theoretical
- Field devices should be selected based on prior use and any available manufacturer data (including safety manual)
 - Continued use of any product requires “prior use” information (Clause 5)

4. Prior Use - Proposed Solution

- Introduce guidance similar to ISA TR84.00.04 Annex L - User Approval
- Prior Use Process
 - Demonstrated in-service performance
 - Understand and account for application environment impact in installation and mechanical integrity plan
 - Establish feedback process to remove devices/technologies that do not perform as required
 - Document user manual to ensure that “learnings” are retained and communicated
5. Safety Manual - Problem

- The term “safety manual” is also used in IEC 61508
 - Leads some to believe that the previous requirements can be satisfied by the manufacturer
- Manufacturer cannot provide constraints for operation, maintenance, fault detection for the intended operational profiles
 - Provide products to a wide variety of industry applications
 - Limited/no knowledge of hazardous events or process
 - Limited/no knowledge of how equipment fits within overall functional safety plan

5. Safety Manual - Proposed Solution

- Define **User** safety manual
- Clarify user safety manual requirements
 - Per manufacturer model #
 - Use limitations – operating environment
 - Failure modes - how to detect and correct
 - Special - installation or configuration requirements
 - Mechanical integrity - operation and maintenance manuals
Conclusion - Common Themes

- More emphasis on justifying performance claims
 - “Real-world” data - Process and human impact
 - Claims for any/all instrumented functions, including BPCS

- Holistic approach needed
 - Division into functions can obscure interrelationships and interconnections
 - Multiple instrumented functions with separate claims

- Recognize impact of systematic failures
 - Common cause
 - Human impact