

 12621 Featherwood Drive • Suite 120 • Houston, Texas 77034
 Tel: (281) 922-8324 • Fax: (281) 922-4362
 www.SIS-Tech.com

SOFTWARE-IMPLEMENTED SAFETY LOGIC
Angela E. Summers, Ph.D., P.E., President, SIS-TECH Solutions, LP

“Software-Implemented Safety Logic,” Loss Prevention Symposium, American Institute of Chemical
Engineers, Houston, Texas, April 2001.
“Software Implemented Safety Logic,” Process Safety Progress, June 2002.

Abstract
The process industry relies on various safeguards to minimize the potential and consequence of hazardous
incidents. Active safeguards, such as safety instrumented systems (SIS), fire and gas systems, and
emergency vents, use process sensors to detect process upsets then take action to bring the process to a
safe state.

Many Users implement active safeguards using programmable logic controllers (PLCs). The PLC uses a
combination of hardware and software to respond to inputs (process variables) by generating outputs
(safety actions). The execution of the safe state logic is dependent on the application program integrity,
which may be developed by the PES vendor, engineering contractor, system integrator, or User.
Successful implementation and thorough verification of the application program is essential for correct SIS
operation.

This paper will discuss the various types of software, including full variability, limited variability, and fixed
programming languages. It will then discuss the proposed application program requirements and
guidelines in the international process industry sector standard, draft IEC 61511.

 June 15, 2007
 Page 2 of 8

 12621 Featherwood Drive, Suite 120
 Houston, Texas 77034

Basic Software Languages
There are three software languages used for the programmable devices in safety instrumented systems
(SIS): fixed program, limited variability, and full variability. These languages exist at various levels in field
devices and in logic solvers.

Fixed program languages are used in many proprietary, dedicated function devices, such as transmitters,
smart positioners, turbo-machinery monitors, vendor-packaged fire and gas systems. These devices only
allow the user to adjust parameters associated with the device operation, such as the range of the
transmitter. The devices do not allow the alteration of the function of the device by the User. Thus, the
language at the User level is fixed. The Vendor provides data sheets, user manuals, or technical guides to
the User to describe how the device functions and what parameters can be adjusted to configure the device
for the specific application. Fixed program language devices have typically undergone extensive testing at
alpha and beta level to ensure the device performs as intended.

Limited variability languages are more flexible than fixed program languages. These languages consist of
pre-developed and tested functions. Limited variability languages include ladder logic, function block
diagrams, and sequential function charts. These languages allow the User to combine the functions to
configure or program the required application logic. The Vendor should provide a User manual for the
software. This manual should define the basic functional components contained in the software library.
This manual should also discuss how to utilize the engineering tool to configure these basic components
into an application program.

Full variability languages are general purpose programming languages, such as C++ and Pascal. This type
of language uses an operating system, which provides system resource allocation and a real-time multi-
programming environment. These languages can be used to create an application program with full
flexibility in how the logic is constructed. The use of these languages is generally limited to computer
specialists who generate unique coding, such as simulating process operations. For safety instrumented
systems, full variability languages are found in embedded software that controls logic solver at the
operating system level. These languages are highly flexible, allowing the individual programmer to create
different coding each time to execute a specific application.

 June 15, 2007
 Page 3 of 8

 12621 Featherwood Drive, Suite 120
 Houston, Texas 77034

The international safety instrumented system standard for the process sector, draft IEC 61511, discusses
the use of software in the process industry. This standard recommends the use of limited variability
languages for application programming. The standard does not prohibit the use of full variability languages.
The standard requires that application programs that are created using full variability languages are
developed according to IEC 61508, which is much more stringent in terms of application development,
documentation, review, and verification than draft IEC 61511.

The following sections discuss in general the philosophy presented in IEC 61511 for developing application
programs. Consequently, the discussion is focused on the development of application programs using
limited variability languages.

Software selection
It is important to not treat the engineering tool or software as something that simply comes with the logic
solver like a computer program on your office PC. The functionality of your application program lives and
dies by its code and that code is dependent on two things: errors in the software used to create the
application program and errors made in the application program. With so much Vendor software available,
Users must assess the software to determine whether it is consistent with the hardware platform, the
anticipated size and complexity of the application program, and the skill of the anticipated programmer.

The application program is constructed using the software engineering tool and function library provided
with the logic solver. An error free application program can only be developed if the engineering tool and
function library is error free. Consequently, the software engineering tool and function library must be fully
tested by the Vendor and, preferably, by an independent person or organization to provide the User with a
high degree of confidence in the software reliability. The functions in the function library will be used over
and over in many potential application programs. An error in the function can behave like a virus by
corrupting multiple programs with incorrect logic. Thus, any functions developed by the User using the
Vendor engineering tool should be tested not only by the developer but also by an independent person or
organization. To facilitate this testing, the software should include tools that aid in verification and testing to
ensure that the program executes the safety logic correctly and is of high quality and integrity.

 June 15, 2007
 Page 4 of 8

 12621 Featherwood Drive, Suite 120
 Houston, Texas 77034

Software should be selected that assists in the control of unauthorized changes to the application program.
Consequently, the software selected must have version management capability. Users should show
preference for software that has the capability of tracking modifications to a specific function level. Since
an application program is only as good as its verification, the software should undergo emulation and/or
simulation to facilitate thorough testing of the application prior to use.

Organization
Safety instrumented system application programs execute logic that is directed at preventing or mitigating
hazardous events. In creating an application program, the organization of the program is very important.
The program should be developed in a modular manner that allows isolation of specific safety function
logic. Safety and non-safety programs should be separated from each other and labeled as safety and
non-safety. The program should be readable and understandable with enough comments that a reviewer
of the program can locate specific logic for modification or verification.

Application program documentation
Application program documentation must be readable and accessible. It must contain at a minimum the
following information:

• Application program description

• Legal entity

• Logic conventions

• Library function description

• Order of logic processing of data

• Identification of non-safety functions

• Identification of program elements not used

• Revision control – configuration management

Hard copies of the full application program are not necessary, but the information listed above should be
keep readily accessible to anyone who desires to modify the program.

 June 15, 2007
 Page 5 of 8

 12621 Featherwood Drive, Suite 120
 Houston, Texas 77034

Application program storage
Software never wears out, because it is not susceptible to environmental conditions, process conditions, or
external stresses. The software tools and data storage media do have a limited technological life. As
computer technology has evolved, data storage media has exhibited a useful life of less than 10 years.
After all, 3.5” disks became widely available only 10 years ago and are now relegated to handing files back
and forth when e-mail is not available. The SIS application program must be accessible as technology
evolves. This means that the User must consider migration paths for the application program and software
storage. Finally, back-up. Back-up. Back-up. Keep electronic copies of the as-installed program and the
previous version in a safe and locked location.

Conformance with safety requirements
The application program is created to follow the safety function logic described in the safety requirements
specification. In order to determine that the programmer has been successful in doing this, a thorough
functional test of the application program logic must be performed. Due to the large number of possible
combinations of operating and fault conditions, it is impossible to completely test every potential failure
path. Therefore, conformance with the safety requirements demands three efforts: understanding design
intent, review of program by an independent person, and verification of the program performance.

First, the application programmer must understand the safety function design intent. Incorrect
interpretation can result in improper sequencing execution, improper shutdown actions, and conflicting
logic. Further, the programmer should include fault detection for field instrumentation, such as out-of-
range, drifting, or stuck measurements, alarming these for repair initiation. Also, the programmer must
understand SIS resets and start-up permissives. If these are not done correctly, the plant will be difficult to
re-start after shutdown. Finally, on-line test logic should be structured to minimize the safety function loss
during testing.

Second, a review the application program structure and content should be conducted by an independent
person. A functional review can be conducted by a representative of the User organization for whom the
SIS is being designed. The User should verify that the logic written is the logic that they intended. This

 June 15, 2007
 Page 6 of 8

 12621 Featherwood Drive, Suite 120
 Houston, Texas 77034

means reviewing the application program at a detailed level, rather than just by looking at the program
execution or program description.

Third, a thorough input to output verification of the program performance covering the following areas:

• Safety function logic

• On-line field device testing logic

• Bypass logic

• Deviation alarm logic

• Data boundary tests

• Execution times

• Sequence implementation

The tests can be conducted using simulators or emulators, but at some point, the application program must
be tested in the actual hardware configuration, including any peripheral devices, such as sequence of
events recorders, communication modules, and remote I/O communication. Remember that there is really
no such thing as too much testing. There is simply a point where you cannot test all failure paths.

Test documentation must be completed prior to release of the system for process plant implementation.
The test documentation must include the following:

• Test parameters,

• Faults found,

• Fault impact, and

• Fault resolution.

These documentation requirements may seem excessive, but the application program is the backbone of
the SIS. If the application program contains faults, the SIS will fail. Hardware failure is dependent on the
random failure of components. SIS designers use known failure rates, redundancy, testing, and
diagnostics to create high integrity systems. In contrast, application program failure is highly dependent on
the engineering tool and programmer, whose failure rates are uncertain. The only way to ferret out these
potential failures is thorough testing and documentation.

 June 15, 2007
 Page 7 of 8

 12621 Featherwood Drive, Suite 120
 Houston, Texas 77034

Modification
The application program should rarely be changed and, when it is, it should be done under management of
change. In fact, changing the application program should be treated as seriously as modifying the process.
While changing the program may be fast and inexpensive, the change can have a profound impact on plant
safety. Due to the relative ease of making program changes, access to the application program must be
controlled with password restrictions. The operator should never have the authority or the capability to
modify the application program. And, no one should have the capability to over-ride or bypass the
application program without management of change approval.

When changes are necessary, the User should evaluate the modification in light of the safety requirements
specification. An impact analysis should be performed to ensure that the change does not impact any other
safety function. All changes must be recorded in a written log to allow auditing of the program version
against the log of approved changes. Unless the change can be sufficiently isolated to a specific program
module, the entire program will require re-verification. If isolation is possible, only the affected program
module must be tested.

Conclusion
Programmable electronic systems are used worldwide to execute safety functions in the process industries.
Their performance is highly dependent on the integrity of the application program. While there are
concerns about software reliability, the incredible flexibility and opportunity to create programs with
diagnostic comparisons, trend analysis, reactive calculations, etc., make software based systems an
excellent choice for safety instrumented systems. However, it is only through careful development, review
and management of change that is possible to ensure, with reasonable confidence, that the program is
correct.

 June 15, 2007
 Page 8 of 8

 12621 Featherwood Drive, Suite 120
 Houston, Texas 77034

References
 “Setting the Standard for Safety Instrumented Systems,” Chemical Engineering, December 2000.
 “Application of Safety Instrumented Systems for the Process Industries,” ANSI/ISA-84.01-1996,

ISA, Research Triangle Park, NC, 1996.
 “Functional Safety: Safety Instrumented Systems for the process industry sector: Part 1

Framework, definitions, system, hardware, and software requirements,” IEC 61511-1, International
Electrotechnical Commission, FDIS (2002).

